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Abstract

The efficacy of two improvement-over-chance or I effect sizes, derived from predictive

discriminant analysis (PDA) and logistic regression analysis (LRA), were investigated for two-

group univariate mean comparisons. Data were generated under selected levels of population

separation, variance pattern, sample size, and distribution shape. Based on the accuracy of

sample estimates, both I indices are acceptable under optimal conditions except when both

population separation and sample size are small. Under variance heterogeneity and normality, I

derived from LRA is acceptable if n sizes are equal. When n sizes are unequal, I derived from

LRA is acceptable only if variance heterogeneity is moderate and population separation is not

small. Under nonnormality, I derived from LRA is acceptable regardless of the variance pattern

provided n sizes are equal. Finally, for greater precision, I derived from LRA should be used

under large sample sizes. Some practical implications are provided.
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Efficacy of Two Improvement-Over-Chance Effect Sizes for Two-Group

Univariate Comparisons under Variance Heterogeneity and Nonnormality

Hypothesis testing based on statistical inference has been the dominant data analysis

method for the development of knowledge in the social sciences. Despite its dominance, many

have criticized its use (e.g., Carver, 1978, 1993; Falk & Greenbaum, 1995; Huberty & Pike,

1999; Schmidt, 1996). It is recognized that hypothesis testing has limitations. For example,

statistically significant p values do not imply meaningfulness and therefore do not sufficiently

describe mean comparison assessments. Emphasizing p values alone may lead to poor decision

making in the form of reporting trivial effects due to large sample sizes. Consequently, the move

toward measuring and reporting effect sizes has gained attention and momentum (e.g., see

Greenwald, Gonzalez, Harris, & Guthrie, 1996; Kirk, 1996; Olejnik & Algina, 2000; Richardson,

1996; Strube, 1988; Thompson, 1999a, 1999b). In fact, a report from Wilkinson and the APA

Task Force on Statistical Inference (1999) recommended that researchers "always report effect

size measures for primary outcomes (p. 599)."

Two popular approaches for estimating the magnitude of an effect are the standardized

mean difference, 8, (Cohen, 1988; Glass, 1977; Hedges, 1981) and measures of association such

as 12 and CO2 (Olejnik & Algina, 2000; Richardson, 1996). One common feature of these effect

size measures is that they assume homogeneity of population variances. Wilcox (1987) noted

that if this assumption is violated the standardized mean difference provides no pure measure of

effect. Carroll and Nordholm (1975) showed the limitations of measures of association when

sample sizes are unequal and variances are heterogeneous. Therefore, what is needed is an index
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that can quantify practical significance in such a way that can be interpreted meaningfully when

population variances differ.

Distribution Overlap

Huberty and Lowman (2000) proposed an index for quantifying practical significance

under variance heterogeneity. Their effect size is obtained by way of a classification analysis

(i.e., predictive discriminant analysis) and is based on the overlap of the continuous outcome

variable score distributions for the groups under study. The concept of group overlap in the

behavioral sciences dates back to Tilton (1937) and was revisited by Alf and Abrahams (1968),

Elster and Dunnette (1971), Huberty and Holmes (1983), and Levy (1967) relating the concept of

group overlap to two-group mean differences testing.

The effect size measure proffered by Huberty and Lowman (2000) was developed from

an earlier investigation by Huberty and Holmes (1983) who discussed the use of univariate

classification as a way to assess two-group comparisons, and percent group distribution overlap

was thus presented in terms of classification proportions. Assuming that the two score

distributions are similar and normally distributed, the two group means are different if the group

overlap is small. One reasonable assessment approach to determine percent of group overlap is

to use a univariate group membership prediction (or classification) rule. Two approaches that

might be used for developing classification rules are (1) predictive discriminant analysis (PDA),

and (2) logistic regression analysis (LRA) for the two-group comparison context.

Indexing Percent of Distribution Overlap using PDA

Hit rates. The amount of group overlap is determined by calculating an across-group

membership hit rate. A hit rate is the proportion of analysis units that are correctly assigned to

the group from which they emanate. The assignment to groups is based on a classification rule.

5
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In the univariate case, if population variances can be assumed to be equal, then a linear rule may

be used. Under this rule sample variances are pooled when computing posterior probability

estimates of group membership, P(g I X1). These posterior probability estimates reflect the

probability that the ith unit will belong to population g, given an observed score Xi. The linear

classification rule can be obtained by

e)___qg{Pi) ( 1 )

E(g I Xi) = E k= exp(-1/2 D20 .

In Equation 1, Deis is the Mahalanobis squared distance of unit i from the mean of group g, [or,

(X; Xg)'s-1(X; Xg), where Xg is the mean of group g and s-1 is the pooled variance on the

predictor variable] and qg is the probability that any unit is a member of population g. The prior

probabilities reflect the relative sizes of the populations involved in the group comparisons. For

example, in an experimental context where individuals are randomly assigned to a treatment or

control condition, it is reasonable to set qj and q2 equal to .5 because the probability of a unit

belonging to one of the two groups is equally likely. Conversely, in a nonexperimental study

where random assignment to groups is not possible (e.g., ethnicity) it is important to choose

probabilities that reflect the population proportions in order to obtain an appropriate across-group

hit rate.

If population variances cannot be assumed to be equal, then a quadratic rule would be

used. The quadratic classification rule can be obtained by

__qp.LIE:1/2 exp(-1/2 D2igl
F_'(g Ni) = E gg, sg:1/2 exp(-1/2 Deg) .

(2)

Unlike the linear rule, the quadratic rule shown in Equation 2 uses separate variances, sg. In

practice, equality of population variances (and covariances) can be assessed statistically by a X2

6
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(Bartlett) statistic or by an approximate F (Box) test. However, these tests are sensitive to

distributional nonnormality (Huberty, 1994, pp. 63-64). That is, the null hypothesis of equal

population variances/covariances might be rejected due to nonnormality and not because of true

variance/covariances inequality.

Huberty (1994, p. 87) recommended an external classification analysis to determine an

across-group classification or hit rate. In an external analysis, the classification rule is

determined on one set of units and then used to classify another set of units (Huberty, 1994, p.

87). One way of carrying out an external analysis involves sample splitting. One hit rate

estimation technique carried out this way is termed leave-one-out (L-0-0) (see Huberty, 1994,

pp. 89-93). According to Huberty and Lowman (2000), an across-group hit rate estimate using

the L-0-0 approach and counting the number of units correctly classified yields a good

representation of group overlap. That is, the L-0-0 method will yield an acceptable point

estimate of the true across-group hit rate.

Improvement-over-chance. After the across-group hit rate estimate is calculated, an

estimate of the magnitude of the effect can be obtained. Huberty and Lowman (2000) pointed

out that an estimated across-group observed hit rate, denoted as Hu, by itself might not be an

adequate effect size index. If the observed hit rate is high but only slightly better than what one

may expect by chance, then the effect would not be very impressive. Under a proportional

chance criterion, the expected or chance frequency of correct classification for group g is eg =

ggng, where ag is the prior probability for group g, and ng is the number of analysis units in group

g. The expected or chance frequency of correct classification across groups then is e = E eg.

From this the expected or chance hit rate across groups is He = e / N.

7
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Huberty (1994, p. 107) proposed a reduction-in-error or improvement-over-chance ( I )

Ho-He
I = 1 - He

(3)

I indicates the proportion of correct classification (or hit rate) that is less than that made if

classification were done by chance. In other words, Equation 3 addresses the question, "To what

extent is the group distribution overlap greater than what may have been expected by chance

alone (i.e., due random classification)?"

Huberty and Lowman (2000) provided some preliminary evidence as to the efficacy of I

as a measure of effect size for univariate and multivariate group comparisons. Using extant data,

they compared I to the point-biserial correlation (pb,), F, and 12. In the two-group comparison

case, they found that the relationship between pb, and I was .90. For the k>2-group homogeneity

of variance condition, the relationship between F and I was .93 and between T12 and I was .97.

When the variances were not judged to be homogenous, I was compared to adjusted F values (or

J values) based on the James Second order test (Oshima & Algina, 1992). Using a quadratic rule

to obtain I values, they found that the correlation between J and I values was .89. Based on these

preliminary analyses, Huberty and Lowman concluded that I may be used in situations that are

univariate, multivariate, homogeneous, heterogeneous, or any combination thereof

Logistic Regression Analysis

Another popular method for two-group classification is logistic regression analysis

(LRA). Whereas discriminant analysis is part of the general linear model, logistic regression

models the nonlinear probabilistic function of the dichotomous variable (Fan & Wang, 1999).

Computationally, obtaining hit rates using LRA is intuitively simpler than PDA. Given a

binary (dichotomous) outcome variable Y = 0 or 1), such as group membership in the two-

8
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group context, and a single predictor (continuous) variable X, the posterior probability of

belonging to the target group (e.g., Y = 1 for group 1 membership) is modeled through the

logistic function

e(13 x)

Y = 1 + e(")
(4)

Assuming only one predictor in Equation 4, 13'X = 130 + /31X1 and Y is the predicted posterior

probability of an observation belonging to group 1. Unlike parameter estimates in PDA,

estimates of logistic regression model parameters ((3') cannot be obtained analytically.

Consequently, maximum likelihood estimators for /3' are obtained iteratively.

Once the logistic regression model is established, the model may be used to obtain the

classification or hit rate. In doing so, obtaining an observed hit rate is straightforward: Classify

Xi into the target group (group 1) if the predicted posterior probability of the observation for that

group is large, otherwise classify the observation into the other group. The problem, however, is

to determine the cutoff point for the predicted probability above which Xi will be classified into

the target group, and below which Xi will be classified into the other group. Typically, the

specific cutoff value is based on the size of the modeled population.

Like PDA, it seems reasonable that the amount of overlap between two population

distributions can be assessed similarly using LRA, and subsequently, values of I can be obtained

using the estimated hit rates computed from LRA. The question then is, "Under which

conditions of variance heterogeneity might one use LRA over quadratic PDA as the method to

compute I?"

PDA vs LRA. Both PDA and LRA can be used to compute I. Theoretically, in the two-

group context, hit rates obtained from linear PDA are identical to the hit rates obtained from

9
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LRA regardless of the variance pattern (Efron, 1975). Because LRA is relatively free of

stringent data conditions it is viewed as a more flexible method (Cox & Snell, 1989; Fan &

Wang, 1999; Neter, Wasserman, & Kutner, 1989).

The relative performance of PDA compared to LRA for two-group classification has been

extensively studied (e.g., Dattalo, 1994; Efron, 1975; Fan & Wang, 1999; Meshbane & Morris,

1996; Press & Wilson, 1978). When PDA assumptions are met very little difference in

classification accuracy have been observed (Fan and Wang, 1999). Similarly, when the two

groups had unequal covariance matrices and very different n sizes, the classification rates for

both PDA and LRA for the total sample (across-groups) were comparable. In addition, Fan and

Wang found that sample size played a minor role in the classification accuracy of the two

methods; however LRA did require larger sample sizes to achieve stable classification results.

When Fan and Wang (1999) computed hit rates using PDA under variance/covariance

heterogeneity, they used a linear rule (pooled the covariance matrices) to obtain the linear

classification function values. These linear PDA hit rates were compared to those based from

LRA. Subsequently, the comparability of quadratic PDA and LRA under variance heterogeneity

was not studied. As previously noted, when population variance/covariance matrices are judged

to be heterogeneous, using a linear rule in PDA is not appropriate, and therefore a quadratic rule

should be used (Huberty & Lowman, 2000). Thus, there is no evidence to date that would

suggest the superiority of either quadratic PDA or LRA as methods for computing I under

variance heterogeneity.

Given the limited understanding and application of the I index as a measure of effect size

used in mean comparison assessments, little is known about its sampling properties under

various data conditions. In the context of two-group univariate mean comparisons, the

10
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distributional properties of I using linear and quadratic PDA or LRA have not been studied. In

addition, the comparability of the two methods on which I is based is unknown. Therefore, the

purposes of the present study were to (1) describe the sampling characteristics of I derived from

both linear and quadratic PDA and LRA as a measure of effect size for two-group univariate

mean comparisons under relevant data conditions, and (2) provide recommendations for using

either PDA or LRA for deriving I, particularly if quadratic PDA or LRA should be used under

variance heterogeneity (and nonnormality).

Method

The following four data conditions were manipulated to study the sampling

characteristics of each I index: (1) population separation (effect size), (2) variance pattern, (3)

total sample size with equal and unequal n, and (4) distribution shape. Variations in these data

conditions are commonly found in social science literature and in most practical situations;

previous simulation studies have found these to be critical determinants of understanding the

sampling properties of the F and t statistics (Harwell, Rubenstein, Hays, & Olds, 1992).

Three levels of population separation, or 5, were considered. These 5 values were set so

that population 2 had a mean which was .2, .5, or .8 standard deviations greater then population 1

(a = 1). These were chosen based on relative values of d outlined by Cohen (1988, pp. 24-27) as

"small," "medium," and "large" benchmark effect sizes; these benchmarks are also embraced by

some social scientists in practice. Fowler (1988) considered somewhat similar levels but

extended the number of levels to include 1.0 and 1.5.

Three population variance ratios were considered: 1:1, 1:4, and 1:8. These variance

patterns reflect a consistent variance of 1 for population 1 while the variance of population 2 is

incremented 1, 4, and 8. Previous researchers have used similar variance patterns and the 1:4

11
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ratio has been found to a point of severity where the violation of variance homogeneity

assumption seriously affects Type I error rates and effect size measures when sample sizes are

unequal (see, Carol & Nordholm, 1975). In addition, the variance pattern is important when

determining whether or not a linear or quadratic rule should be used to obtain hit rates when

using PDA. As previously pointed out, if population variances are judged to be unequal, a

quadratic rule is recommended to obtain an appropriate hit rate. The choice of linear versus

quadratic classification is discussed more extensively by McLachlan (1992, pp. 132-137).

Three levels of total sample size were manipulated. Total sample size was initially varied

at three levels, N = 40, N = 100, and N = 600. Based on the Cohen (1988, p. 30) power charts,

these sample sizes were sufficient to test the null hypothesis of no population mean difference

with power equaling .80 at alpha equaling .05 in a directional test when the populations differ by

.80a, .50a, and .20a, respectively. However, using an iterative procedure, we found that the

largest N needed was 300 because N sizes greater than 300 revealed no change in the sample

estimates of I. Thus the final three sample sizes used in this study were 40, 100, and 300.

For each level of N, three patterns of group or n sizes were used. For N = 40, sample size

ratios of 20:20, 30:10 (where the larger n was associated with the smaller variance), and 10:30

(where the smaller n was associated with the smaller variance) were used. For N = 100, n ratios

were 50:50, 75:25, and 25:75, and for N = 300, n ratios were 150:150, 225:75, and 75:225.

Moreover, considering equal and unequal n ratios in combination with unequal variance patterns

was viewed important to adequately describe the sampling characteristics of I. Previous

researchers (e.g., Glass, Peckham, & Sanders, 1972; Lix & Kesselman, 1998) have considered

this joint condition to assess the robustness of common test statistics such as the t and F statistics.
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Finally, two levels of population shape were considered: a normal and a skewed-

leptokurtic or peaked (1.75, 3.75) distribution. The distribution shapes were identical for the two

populations being compared. A third level of nonnormality (skewed-mesokurtic .75, 0) was

initially considered but based on preliminary results this level was dropped as unnecessary. We

thought considering only two distribution shapes was sufficient to obtain a good picture of the

sampling properties of the indices under investigation.

Data Generation

We generated data to meet the above conditions using SAS IML (SAS Institute, 1990).

Within each of the two populations, independent normally distributed observations Zll `=

andi = 0 or 1) were created using the SAS-RANNOR function. Using the Fleishman (1978)

power transformation,

Xii = ali + bZ + cZ2ii + dZ3ll , (5)

the observations were transformed to reflect the target distribution shapes. That is, for normal

distributions, a = 0, b = 1, c = 0, and d = 0. For the skewed-leptokurtic distributions, the

constants were set in Equation 5 to: a = - .399, b = .930, c = .399, and d = -.036 (Fleishman,

1978). To generate data with the desired expected means and variances, each observation was

transformed by multiplying it by qa2 and added to the desired population mean, Ili (YE = Ni +

N1i6i2). To arrive at the three levels of population separation (i.e., 8 = .20, .50, and .80),

differences in population means were standardized using the standard deviation of population

one (or 1).

Data were then exported to SAS DISCRIM in order to obtain sample estimates of the

population linear and quadratic hit rates and I values (here on in, sample estimates of I using

linear and quadratic PDA are denoted as linear I and quadratic I, respectively). Using the SAS

.1 3
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DISCRIM procedure, a predictive discriminant analysis was performed. First, to obtain sample

estimates of population linear and quadratic hit rates we decided to set the prior probabilities to

be equal (.50), which meant that in the population the probability of being in either of the two

groups was .50. Second, an external leave-one-out (L-0-0) counting analysis was used to obtain

hit rates based on a linear and a quadratic rule. As previously discussed by Huberty and

Lowman (1998, p. 194), external analyses using an L-0-0 counting estimator yield unbiased

estimates of the true population values. To compute linear and quadratic i values, chance was

defined by using the proportional chance criterion (recall that the formula under the proportional

chance criterion is > nlq1 / N). Subsequently, for this study q5 or prior probabilities for both

groups were .50.

Finally, the same data were exported to the SAS LOGISTIC in order to compute sample

estimates of the population hit rates and I values based on LRA (here on in, sample estimates of I

using LRA are denoted as logistic ). A cutoff value of .50 was used to classify units into the

target group (group 2). That is, .50 represents the modeled probability function for group 2 and

was considered to be equal to that of group 1. In addition, similar to PDA, hit rates based on

LRA are biased upward because model estimation and classification are done on the same

sample. For PDA, this bias correction was achieved by implementing an external analysis (L -O-

O counting estimation method). Conversely, for LRA, this external analysis technique wherein

fitting the model with each observation left out was considered to computationally expensive

(SAS Institute, 1997, p. 461). Instead of using a L-0-0 counting approach, the SAS LOGISTIC

procedure directly implements a less expensive one-step algebraic approximation for correcting

the upward bias (SAS Institute, 1997, pp. 461-468). Logistic i values were computed similar to

linear and quadratic Ti.
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Data Analyses and Evaluation

The four data conditions were manipulated for the present investigation in a completely

crossed design. A total of 162 conditions were investigated: 3 levels of population separation, 3

variance ratios, 9 sample size levels (i.e., including equal and two unequal n ratios under each of

three total sample sizes), and 2 distribution shapes. For each of these conditions 5,000

replications for each index were computed. In order to describe the distributional properties of

each index, means, standard deviations, and three quantiles (i.e., 25th, 50th, and 75th percentiles,

or Q1, Q2, and Q3) were tabulated for each condition.

The accuracy or the degree of bias of each estimator was computed as the difference

between the sample mean of i over 5,000 replications and the true value of I. Differences greater

than +/- .301 (or, in other words, differences in excess of 30%) indicated severe bias. This 30%

criterion was based on Bradley (1978) who recommended that a procedure might be considered

robust to the violation of an assumption if the Type I error rate was within +/- .50a. Bradley

considered +/- .50a liberal and .10a conservative. Adopting Bradley's approach, we considered

.501 to be too liberal and .10I to be too conservative, therefore we decided .301 was a reasonable

criterion for bias. Finally, precision was computed as the standard deviation of the sampling

distribution of i under each condition. Box plots were also used to evaluate the precision of the

estimators. Specifically, the inclusion of the median of I at one level of population separation

within the hinges (25th and 75th percentiles) of adjacent levels of population separation was

viewed as unacceptable.

Determining Population Values of I

Based on Equation 3, a theoretical value for I can be determined assuming variance

homogeneity and normality. Using the proportional chance criterion to determine the chance

5
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hit rate as He = E (qgng) / N, and the true hit rate determined as

Ho = 4 (/2) , (6)

where t is the standard normal distribution function and A is the positive square root of the

population Mahalanobis distance index (Huberty, 1994, p. 84), I can be computed as:

I = WA/2) - E (az%) N-1] / [i - E (ggng) (7)

In the univariate case with normal distributions and equal variances, Mahalanobis distance A

equals the standardized mean difference 8. Furthermore, in the two-population comparison case,

where the probability of being in population 1 is .50 and in population 2 is .50 (e.g., in a

randomized experiment), the chance classification is simply .50 (E (ggrig) N-I = .50). Then for

different values of population separation, 8, I can be computed. For example, when 8 = .20,

4)(.2/2) = .539 (see Equation 6) and I =.080 (see Equation 7). Similarly for 8 = .50 and 8 = .80, I

equals .197 and .311, respectively. Finally, under the optimal conditions of variance

homogeneity and normality, theoretical across-group hit rates, Ho, determined from LRA are

identical to those using both linear and quadratic PDA.

When population variances are unequal and/or when population distributions are

nonnormal, the aforementioned procedure for computing the true Ho is not so straightforward.

To obtain I values under variance heterogeneity, it was necessary to determine the value of I in

the population for each heterogeneous variance pattern under study (i.e., 1:4 and 1:8). For any

given unequal variance pattern (e.g., 1:4), both linear PDA and LRA methods will provide

identical values of I. On the other hand, I values based on quadratic PDA are different for each

variance pattern. In fact, as population variance patterns become more extreme, quadratic PDA

will maximize the across-group hit rate, and in turn, population I values become larger. In order

to obtain I values under variance heterogeneity and nonnormality, we generated total sample
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sizes of 2,000,000 for each variance pattern/distribution shape of interest here and treated them

as different "populations." Then for each "population" we computed the I index using the linear

and quadratic PDA and LRA methods.

To check the accuracy of our empirically generated "population" values, we computed

the values of I under normality and equal variance and compared them with the theoretical

values derived using Equations 6 and 7. Table 1 shows the population I values for three variance

patterns under data normality, nonnormality, and three levels of population separation. When

population variances were equal and distributions normal, the empirically derived I values were

almost identical to the theoretical values. We used these empirically derived values of Ito

evaluate the sample estimates of I under a variety of conditions.

To interpret the relative size of I across the data conditions, Table 1 reveals a general

change in the size of I, depending on the variance pattern and distribution shape. For example,

as population variance patterns become more extreme, I values derived from both linear PDA

and LRA decrease but remain the same, while I values derived from a quadratic PDA tend to

increase. The change in size is more obvious for larger effect sizes (.80) than for smaller effect

sizes (.20). This makes sense because quadratic PDA maximizes the across-group hit rate under

variance heterogeneity. Finally, under nonnormal population distributions, I values are in

general smaller than those under normal distributions.

Results

Distributional Properties of I under Normal Population Distributions

Equal Variances. Table 2 contains results pertaining to the accuracy and precision of

linear, quadratic, and logistic I under equal population variances (1:1) and data normality (0,0).

Values in bold identify those conditions where the bias exceeded our criterion of +/- .31. Under
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these optimal conditions none of the indices were severely biased, except when both population

separations were small (8 = .20) and sample sizes were small (N = 40). That is, when 8 = .20

and N = 40 (and our cutoff was +/- .025), linear i underestimated the parameter by .052,

quadratic i underestimated the parameter by .056, and logistic i overestimated the parameter by

.049 for equal n sizes. A similar pattern was found when n sizes were unequal, thus indicating

consistency across n ratios. Table 2 also indicates that linear and quadratic PDA slightly

exceeded our criterion of unacceptable bias when N sizes were moderate (N = 100) for equal n

sizes.

Although the LRA approach resulted in the best precision, all indices varied greatly from

the parameter value. The precision of all indices improved when N sizes were large (N = 300),

as shown in Table 2. In addition, Figure 1 graphically demonstrates the precision of the

parameter estimation by presenting the three point summaries (QI, Q2, Q3) of the sampling

distributions for each index when N = 300 (equal n sizes). When N = 300, the median of each

index at one level of population separation was not captured within the hinges of adjacent levels

of population separation. However, when N sizes were smaller, this was not the case. For

example, when N = 40 and 100 the median of each i was included within the hinges of adjacent

levels of population separation (this result is not shown in Figure 1 but is available in

supplementary figures). Thus, unless the sample size was large, there was considerable overlap

among each index's sampling distributions.

Heterogeneous variances. Table 3 presents the results for each index when populations

variances were moderately heterogeneous (1:4) Ibut population distributions were normal.

When n sizes were equal, linear and logistic i provided estimates of the parameter that were

generally within our acceptable criterion, except when both population separations and sample
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sizes were small (8 = .20 and N = 40). That is, Table 3 shows when 8 = .20 and N = 40 (and our

cutoff was +/- .019), linear i underestimated the parameter by .023 and logistic i overestimated

the parameter by .068. Quadratic Ti on the other hand provided estimates within our acceptable

criterion when n sizes were equal across all levels of population separation and N size.

Moreover, the results in Table 3 were consistent with those found under more extreme variance

heterogeneity (1:8).

With unequal n sizes and moderate variance heterogeneity (1:4), both linear and logistic I

provided estimates of the parameter that exceeded our criterion for bias only when group

separation was small (8 = .20). Specifically, Table 3 shows with small population separation,

linear Ti underestimated the parameter when the group with the smaller n had the smaller

variance, while logistic Ti overestimated the parameter when the group with the smaller n had the

larger variance. With larger group separation (8 = .5 or .8), both linear and logistic Ti provided

acceptable estimates of the parameter. Quadratic Ti on the other hand consistently over- or

underestimated the parameter across all levels of population separation and N sizes.

Furthermore, for extreme variance heterogeneity (1:8), none of the indices provided estimates of

the parameter that was within our criterion for bias when n sizes were unequal. Thus indicating

that I derived from either PDA or LRA leads to severely biased estimates of the parameter when

variance heterogeneity is extreme and n sizes are unequal.

The precision of each index slightly improved when N sizes were large = 300), as

shown in Table 3. Figure 2 further shows when variance heterogeneity was moderate (1:4) and

N = 300, the medians of both linear and logistic Ti were just captured within the hinges of

adjacent levels of effect size. Thus indicating some overlap among eachindex's sampling

distributions. Under extreme variance heterogeneity (1:8), the precision of linear and logistic Ti

9
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did not improve at all under large N. Furthermore, with quadratic i, the three levels of group

separation under moderate variance heterogeneity (1:4) resulted in I values that differed only

slightly, .463, .470, and .480 for small, medium, and large group separation, respectively. In

other words, the sampling distributions of I derived from quadratic PDA were almost identical

for all three levels of effect size. Consequently, when variances differ it is almost impossible to

distinguish among the three levels of group separation studied using quadratic PDA.

Distributional Properties ofI under Nonnormal Population Distributions

Equal variances. Table 4 summarizes the results when population variances were equal

(1:1) and population distributions were nonnormal (1.75, 3.75). When n sizes were equal, all

indices provided acceptable estimates of the parameter except when both population separations

and sample sizes were small. That is, when 8 = .20 and N = 40 (and our cutoff was +1- .020),

linear i underestimated the parameter by .036, quadratic I underestimated the parameter by .020,

and logistic i overestimated the parameter by .038. With unequal n sizes, none of the indices

provided an estimate of the population value that was within our criterion for bias. Specifically,

Table 4 shows that all estimates overestimated the population value when group 1 (or the target

group in the LRA case) had the larger n, and tended to underestimate the population value when

group 2 had the larger n. This is in contrast to what was found for unequal n sizes under data

normality (see Table 2).

The precision of the each index under nonnormal population distributions was typically

less than when the population distributions were normal. For example, Table 2 shows when data

were normal and n sizes were equal, the precision of each index was .069, .061, .049 for linear,

quadratic, and logistic i, respectively for small population separations (8 = .20) and large sample

sizes (N = 300). For these same conditions but nonnormal distributions, as shown in Table 4, the

20
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precision was .091, .072, and .053, respectively. Figure 3 further demonstrates the small

reduction in precision under nonnormality when sample sizes were large. That is, when N = 300,

the medians of each I index were just captured within the hinges of adjacent levels of effect size.

However, compared to data normality, when N = 300, the median of each I index was not

captured within the hinges of adjacent levels of effect sizes (see Figure 1).

Heterogeneous variances. When population variances were heterogeneous and

distributions were nonnormal, results were found to be similar to those under equal variances

(1:1) and nonnormality. Table 5 presents the results for moderate variance heterogeneity (1:4)

and nonnormal populations. When n sizes were equal, all indices provided estimates of the

parameter that were within our criterion for bias, except when both population separations were

small (8 = .20) and when sample sizes were small = 40). However, when n sizes were

unequal, none of the indices provide an estimate of the parameter that was within our criterion

for bias. Furthermore, the degree of accuracy shown in Table 5 was similar to that found under

extreme variance heterogeneity (1:8).

The precision of each index again did not greatly improve under variance heterogeneity

and nonnormal distributions when sample sizes were large. For example, Table 4 shows when

data were nonnormal and variances were equal, the precision of each index was .091, .072, and

.053 for linear, quadratic, and logistic i, respectively for equal n sizes, small population

separations (8 = .20), and large sample sizes = 300). For these same conditions but

moderately unequal variances, as shown in Table 5, the precision of each index was .124, .079,

and .056. Figure 4 further demonstrates the small reduction in the precision under nonnormality

when variance heterogeneity was moderate (1:4) and sample sizes were large. That is, when N =

300, the median of each i index was just captured within the hinges of adjacent levels of effect

21
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size. Compared to the equal variances condition and data nonnormality, when N = 300, the

median of each i index was also captured within the hinges of adjacent effect sizes (see Figure

3). Furthermore, under extreme variance heterogeneity (1:8) and nonnormality, the precision

was even less than under moderate variance heterogeneity.

Discussion

None of the indices studied provided and adequate estimate of effect size for all of the

conditions studied. The usefulness of each of the indices depended on the population

characteristics. Under the optimal conditions of equal population variances and data normality,

both linear and quadratic PDA and LRA provided accurate estimates of I, except when

population separations and sample sizes were jointly small (8 = .20 and N = 40). These results

were consistent across all n ratios. In addition, linear and quadratic PDA methods also led to

unacceptable bias under small population separations (8 = .20) and moderate sample sizes (N =

100). Furthermore, the precision of all indices under optimal conditions was good only under

large sample sizes.

When variances were heterogeneous, disparities between PDA and LRA depended on the

n ratio. When n sizes were equal, both linear PDA and LRA provided accurate estimates of I,

except when both population separation was small (8 = .20) and the total sample size was small

(N = 40). Quadratic PDA, on the other hand, provided an accurate estimate of the parameter

regardless of the degree of population separation and sample size. Conversely, when n sizes

were unequal, linear PDA and LRA led to severely biased estimates only when variance

heterogeneity was moderate (1:4) and when population separation was small (8 = .20). The LRA

method overestimated the population value when the group with the smaller n had the larger

variance. Similarly, quadratic PDA consistently overestimated the parameter, but did so across

22
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all conditions. Under extreme variance heterogeneity (1:8), none of the indices performed well

when n sizes were unequal.

The unacceptable bias found when both variances and n sizes were unequal may have

resulted from using equal prior probabilities (for the PDA method). Under heterogeneous

variances, if the n sizes do not reflect the sizes of the two populations, greater bias may result.

Similarly, the cutoff value should match the size of the target population when using the LRA

method to derive I.

In terms of precision, neither PDA nor LRA estimates of I were very precise under

variance heterogeneity, even when sample sizes were large. The lack of stability presented by

quadratic PDA may partly be due to the inability to differentiate between small, medium, and

large population values of I under variance heterogeneity. When population variances are

unequal, the goal of quadratic PDA is to maximize the across-group hit rate. As variances

become more heterogeneous, the relative sizes of the theoretical hit rates using quadratic PDA

become less distinguishable, rendering the relative sizes of I also indistinguishable. This poses

as a major limitation of quadratic PDA to derive I under variance heterogeneity.

Nonnormality impacted all three methods of computing I. When n sizes were equal, all

three methods of computing I provided an adequate estimate of the parameter except when

population separation and sample size were jointly small. This was similar to the result under

data normality. However, precision, in general, was less than what resulted under data

normality. Unlike under data normality, the variability of sample estimates of I did not decrease

greatly with large sample sizes. Conversely, when n sizes were unequal all three methods of

deriving I led to severely biased estimates across all population separations and sample sizes.

The bias was upward when the larger n was associated with the smaller variance and downward

23
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when the larger n was associated with the larger variance. Again, this may be largely due to the

fact that equal priors were used (in PDA) or a .50 cutoff value was used (in LRA) across all

conditions.

Finally, under the joint occurrence of heterogeneous variances and nonnormality, the

results were similar to those found under equal population variances and nonnormal

distributions. When n sizes were equal, none of the indices were severely biased regardless of

the distribution shape. However, when n sizes were unequal, all of the indices were severely

biased. As in the case of data normality, the discrepancy between the size of the priors and n

ratio may have been responsible for the inaccuracy found under nonnormality.

Practical Implications and Recommendations

Under optimal conditions, either PDA or LRA are acceptable methods for deriving I,

provided population separation and sample size are not jointly small (i.e., 8 = .20 and N = 40).

When variances are heterogeneous, LRA is more practical compared to PDA. Although

Huberty and Lowman (2000) recommended the quadratic rule when computing I when variances

are judged to be heterogeneous, there are two major limitations of using this procedure. First, as

shown in the present study, when variance patterns become more extreme, the true values of I

based on quadratic PDA become less differentiated. Second, given the difficulties associated

with statistical tests for variance equality (e.g., Box test) used under nonnormality, it may be

difficult to determine exactly when the quadratic rule should be used. LRA, on the other hand,

does not require a test of variance equality, the values of I are differentiated for all variance

patterns and is easy to compute, thus representing a more practical method to assess group

overlap.

2 4
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Given the practical limitations of using quadratic PDA, we recommend that LRA be used

to estimate I under variance heterogeneity if group or n sizes are equal. When group sizes are

unequal, we also recommend LRA to compute I over quadratic PDA only if variance

heterogeneity is moderate (1:4) and population separation is not small (i.e., S values .50 or

greater). When distributions are nonnormal, we recommend LRA regardless of the variance

pattern, provided n sizes are equal. Finally, we should point out that the precision or stability of

sample estimates was in general somewhat better only under large sample sizes (_N = 300).

Therefore, for best performance, I derived from LRA should be used if sample sizes are large.

Moreover, if one chooses to use LRA under the data conditions stated above, the following

intervals are suggested:

< .08 is small
.11 to .15 is medium

> .20 is large.

As demonstrated in Table 1, these intervals (including gaps between them) were created because

small, medium, and large I values (based on 8) slightly shift downward when variances become

more heterogeneous and when distribution shapes are nonnormal.

Limitations

There are three aspects of this study that may limit the generalizability of the findings.

First, we selected and manipulated a limited number of data conditions, and so the findings can

only be generalized to the specific data conditions and levels used in the present study. Although

the specific levels under each condition did provide sufficient information to adequately describe

the sampling properties of each index, future research might consider additional levels in order to

obtain a more comprehensive picture.
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Second, we investigated only two-group univariate mean comparisons. Thus the

conclusions drawn from this study pertain exclusively to the two-group comparison context.

However we suspect similar and perhaps more extreme problems would arise in more complex

analyses (e.g., multiple groups, multiple outcomes). Future research might consider

investigating the performance of I, perhaps using polytomous logistic regression, when the

number of groups being compared is greater than two.

Third, only equal population based priors (.50 and .50) were used in the context of PDA,

and only a .50 cutoff value was used in the context of LRA. Future research may examine the

effect of using priors based on sample proportions instead of known population sizes (i.e.,

assuming proportional sampling). This would be important because when group sizes were

unequal, I in general was severely biased under variance heterogeneity and nonnormality. We

believe that in practice many researchers may be inclined to simply use sample proportions if no

knowledge of population sizes is available. Unless a proportional sampling procedure was used,

this may lead to improper hit rates and in turn improper I values when variances are unequal.

Practical Limitations of using I as a Measure of Effect Size

One of the major shortcomings of using the I index, particularly derived from PDA, is

that, depending on the ratio of the variances and distribution shape, a different theoretical value

of I will be obtained. In the case of quadratic PDA, I values are less differentiated in terms of

small, medium, and large as variance patterns become more extreme. Likewise with linear PDA

and LRA, I values tend to attenuate as variances become more extreme. Because most of the

data that are gathered in the social sciences for instance manifest conditions that are less than

ideal, researchers cannot attempt to make stringent qualitative judgments based on sample

estimates of I regardless of which method is used to compute I. Thus, under less than ideal data
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conditions, we stress that any I index computed from a given data set a must be interpreted with

caution, even when using the intervals suggested in this study.

Conclusion

Under optimal data conditions, the researcher has the luxury of using either PDA or LRA

to derive acceptable estimates of I, except when both sample size and population separation are

small. However, this joint condition may be avoided if the researcher performs a power analysis

a priori to maintain the proper sample size to detect an anticipated effect size in the population.

Furthermore, under heterogeneous variances, quadratic PDA is not recommend because of an

inability to differentiate between levels of effect size, making qualitative interpretation difficult.

LRA on the other hand does not require a test of variance equality and logistic regression-based

hit rates can be easily obtained from popular statistical software packages (e.g., SPSS and SAS),

making LRA the more practical derivation method. For optimal performance, however, I should

be used under large sample sizes th = 300) because of improved precision (and accuracy).

To conclude, we recommend I derived from LRA unless n sizes are unequal, in which

case I derived from LRA is acceptable only when variance heterogeneity is moderate (1:4) and

population separation is not small. We believe this seems reasonable because small population

separations are typically not desirable and more extreme variance heterogeneity (e.g., 1:8)

conditions are atypical in social science research. Finally, under nonnormal population

distributions, I derived from LRA is recommended regardless of the variance pattern provided n

sizes are equal. Hence, it appears the n ratio is a critical factor as to whether one can use LRA to

compute I when variances are heterogeneous and/or under nonnormality. However, based on the

conclusions drawn form this study, if the researcher can a priori maintain an equal n ratio when

the size of the two populations are equal, then the use of I derived from LRA can be efficaciously used.
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Footnotes

Due to space restrictions, only a representative sample of conditions are reported in this article.

Specifically, supplementary tables containing results under levels of extreme variance

heterogeneity (1:8) can be obtained from the first author.
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Table 1

Empirically Derived Values of I Based on PDA and LRA under Normal (0, 0) and Nonnormal

(1.75, 3.75) Population Distributions

= .20

Linear PDA / LRA Quadratic PDA
Variance
Pattern Normal Nonnormal Normal Nonnormal

1:1 .080 .065 .080 .065
1:4 .060 .048 .324 .298
1:8 .053 .044 .463 .499

8 = .50

Linear PDA / LRA Quadratic PDA

Normal Nonnormal Normal Nonnormal

1:1 .197 .166 .197 .166
1:4 .148 .117 .341 .147
1:8 .133 .105 .470 .430

8 = .80

Linear PDA / LRA Quadratic PDA

Normal Nonnormal Normal Nonnormal

1:1 .311 .269 .311 .269
1:4 .235 .182 .367 .187
1:8 .212 .160 .480 .278
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Improvement-Over-Chance Effect Size 39

Figure Caption

Figure 1. 3-Point Summary of Linear, Quadratic, and Logistic I under Optimal Conditions and

Large Sample Sizes.
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Improvement-Over-Chance Effect Size 40

Figure Caption

Figure 2. 3-Point Summary of Linear, Quadratic, and Logistic i under Variance Heterogeneity

(1:4), Normality (0, 0), and Large Sample Sizes.
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Improvement-Over-Chance Effect Size 41

Figure Caption

Figure 3. 3-Point Summary of Linear, Quadratic, and Logistic i under Equal Variances (1:1),

Nonnormality (1.75, 3.75), and Large Sample Sizes.
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Improvement-Over-Chance Effect Size 42

Figure Caption

Figure 4. 3-Point Summary of Linear, Quadratic, and Logistic i under Variance Heterogeneity

(1:4), Nonnormality (1.75, 3.75), and Large Sample Sizes.
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